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Laplacian growth of parallel needles: A Fokker-Planck equation approach
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Using a conformal transformation to set up the iterative nonlinear equations, we study analytically the
kinetics of growth of parallel needles. We establish a discrete Fokker-Planck equation for the probability of
finding at timet a given distribution of needle lengths. In the linear regime, it shows a short-wavelength
Laplacian instability which we investigate in detail. From the crossover of the solutions to the nonlinear
regime, we deduce analytically the general scale invariance of the two-dimensional models.
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Among the growth processes, Laplacian growth plays alritic growth from a flat interface. In a recent experiment,
crucial role by its ubiquity. It is underlying electrodeposition, Losertet al. [13] showed the spatial period-doubling insta-
viscous fingering, the start of dendritic growth of crystalline bility of dendritic arrays in directional solidification as sug-
structures during solidification when the diffusion length isgested theoretically by Warren and Landé#]. We will
large, dielectric breakdown, or the growth of bacterial colo-pProve analytically the existence of a similar behavior in
nies. Diffusion limited aggregatiofDLA) [1] was the first ~needles growth. _ .
proposed stochastic model belonging to the class of Laplac- In Laplacian growth, two ingredients are needed: on the
ian growth. The Laplacian field takes here its origin in theone hand the Laplacian behavior determines the long-range
diffusion of individual particles in front of the growing struc- interaction characteristic of DLA growth, but on the other
tures. The Laplacian field may also be the electric field as ifiand the inherent Laplacian instability could not operate
electrodeposition or in dielectric breakdown. For these reaWithout the presence of local noise. This noise can be intro-
sons the DLA model has been the subject of a considerabl@uced in the initial state as in Ref§] and[11]. But in real
amount of work. Unfortunately, in spite of the apparent sim-Systems it comes from the finite siz# of the diffusing
plicity of the model, our analytic understanding of DLA re- particles, sticking to the needles at discrete time intervals.
mains very unsatisfactory. Therefore a more modest but use- The classical way to parametrize in a convenient manner
ful approach consists of a better understanding of DLALaplace’s equation with a zero potential boundary condition
growth in the absence of branchif@,3]. The simpler prob- 0n a set ofn parallel needles is to introduce first a mapping
lem of growing needles has then been considered: they ma8f the unit circle in the complex planeonto ann-branched
be either radial or parallel, in the presence of reflectiorstar in the complex plane:

(model R) or of absorption(model A [4]) of particles as n-1
shown in Fig. 1(see, for instance, Krufp] for a review. In w=Ff(2)=Az]] (1-€%iIz). (1)
this paper we will concentrate our attention on systems of j=0

Fearreas"tell?tijv%bé?rgennes?g:gs ?:é?grﬁgfr:?;rei;ungﬁxsnfsl Itno- In this transformationsra; is the angle between two suc-
- : ’ bpIng cessive needlelg —1,j} in the initial planew, the sum of the
obtain analytical results as shown by Derrida and Hal6in ; ol :
for radial needles. angles being z (£j_ga;=2). The angle®; fix the lengths
Considering the growth of two-dimensional structures, w

eli of the needles, and is a known coefficient. The tip posi-
will follow here the same approach of conformal mappingtIons in planez are parametrized by the anglgs:

(for details the reader is referred to Shraiman and Bensimon zi=explig;), O<isn—1. 2
[7], SZzep and Lugos[8], Peterson and Ferf®], Kurtze[10],
Derrida and Hakini6], and Ref[11] for the dynamick But A second transformatiof) =In w maps the star im into

contrary to previous works, we shall focus our attention ona set of parallel needles in a complex pldhend the initial
the establishment of a Fokker-Planck equation to describe
the growth kinetics. This is because DLA is in general not a 5o
deterministic continuous nonlinear problem, but basically a )
stochastic phenomenon discretized in space and time. Com-
petition between the size of the sticking particles and the ~
relative position of growing branches play a crucial role. ﬁ
Consequently the Fokker-Plan@r equivalently the Lange-
vin) approach appears as very appropriate.
Only the case of two needles can be solved exactly. So, as
a first step we will study the Laplacian instability, in the
linear regime, starting from an initial distribution of needles
with equal lengths. The corresponding behavior is somewhat
analogous to the “Mullins-Sekerka” instabilify12] in den- FIG. 1. Diffusion limited aggregation of parallel needles.
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anglesa; between needles becomes now a distance be- =g
tween successive parallel needles, and this pattern of needles
is spatially repeated with a periodic lengthm2 The
Laplacian field is then

10

®(Q)=Re{In[f~*(expQ)]} ©)

in the plane). The lengths of the needles are then given by V(;)
[In[f(2)]| at the pointz=2z (0<is=n—1): T

n—1 FIG. 2. Graph of the effective potentis(T,) when ay=a;.

li=log(4A)+ >, a;iln|sin (¢, — 6;)/2]|. (4)
o =’ IS 6,)/2] Now we add at each time intervat with probabilities

n additional constraints must be imposed to the angles gi(:)ln) r(nr(l,ce),-tdel etihat consequentlyl, =41/2), a particle of size

and ¢; to takes into account the fact that the needle tips

maximize|f(z)| at z=z(V0si<n-—1) P(T . t+ 60)=po(Ty— 6T )P, — 8T,.)
n—-1 ~ ~ ~ ~
D a;cotar (¢ — 6,)/2]=0, 5) +pi(li+ 8P +614,t). (12
j=0

The evolution equatiofil2) can be expanded to second order
or if C is the matrix ofc;;=cotari(¢;— 6;)/2], anda the In dl, leading to the Fokker-Planck equation
vector{«;}, ~
PUY b 2p = Lo (P, oud 13
CC-;:O) (6) at -2 |i ( l!) 2 |1( ( l!) ( l))1 ( )

Since the number of unknown quantities is larger than thavhere the following constants have been introduced:
number of parameters by one, we put the average position of _ w2 )
the needles at the origin of thecoordinate(this fixesA), v=4l/ét and Dy,=dl"/(2n"41), (14)

n—1 v/2 (—v/2) is the relative growth velocity of needle(@),

> 1,=0. (7)  andD; is the “diffusion” coefficient of the sticking between

i=0 the two needles. At short time the particles stick at random
on both needle tips, up to the moment when one needle gives

The growth rate is now supposed to be proportional to thgyay to the other. The functiolf characterizes the screening
potential gradient along the needles, and the growth to bgffect,

restricted to the tips while the needles remain at zero poten-

S|

IO:

tial (model A). Therefore, following Refs[6] and[11], the UT)=[u()—11[u)+1], (15)
growth rate of the needles is
dl [t _1p whereu(T,) is implicitly defined by Eq(11). Equations(lB)
e > a;{1+cof[(¢;— 6;)/2]} , (8)  represent the diffusion of a "particle” with coordinate in
dt | =0 a potential
from which we will determine the growth probability, of ~ v SO
the needles, V=5 uTydl,. 16
The general two-needle case= 2) can be exactly solved
[15]. With condition(7), If the needles are equidistantyy=ca;=1 and u(T,)
_ n T =expl;, we have explicitlyi/(T,) =tanh{,/2). The potential
lo=(lo+11)/2=0, 11=(lo=11)/2. ©) (shown in Fig. 2 is then explicitly
The problem is completely defined by the knowledge of v
the probabilityP(T,,t) to find at timet a length gad ;. The V(T1)= - 5In[coshT,/2)]. (17

growth probabilities of both needles are

~ ~ The time evolution of the solution of E¢13) for needles
Po(l)=u/(1+u), py(l)=1(1+u), (10 of equal length &o=a;=1) att=0, is shown in Fig. 3.
Fokker-Planck equation for the growth of a comb of

with needles We consider now a comb of equidistant needles
PN G (aiEIZ/n for all i). In this.ca_se i_t is convenient to use the
exdT,]=u 0—1> (11)  Fourier transform of the distribution of lengths. To avoid the
@+ agu? problems due to the zero eigenvalue®t6), the completely
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We first calculates6(0) and 5¢(0) corresponding to a

variation 5L (0), for instance the addition of a particle on
needleh. Then the sticking probability;[ h] of a new par-
ticle on needle, while a particle of sizeS| was already stuck

on needleh, and finally the sticking probabilitpk[h] of a
particle in modek, while a particle of sizeSl was already
stuck in modeh. We find

FIG. 3. Probability distribution ofP(T,,t) at times t/ét ~_ Ok k k
=20,3Q...,120. PrLh]= =+ dnhidl, Me=| 1= . (22)
symmetrical components=0 (corresponding td) are ex- Linearized kinetic equation of a comhet P,m(lf,t) be
cluded and we use an indexto specify these reduced vec- the Jinearized probability to find a set of needles of dize
tors, Linearization supposes that the lengthsre not too differ-

. ent in such a way that no needle can be completely screened
V,=F,-V with by the others. The sticking probabilities dfnare then the
superposition of the individual probabilitig®[1,], to add a
F = {F = (1nexp 2mikh/n)t, = . new particle on needlewhile needleh has already a length
= {Fan=(Lm)exp(2r Ji<ken-1.0eh=n-1 (18 Inand is deduced fromi[h] by replacingsl by I}, (super-
position rulg.

The Fokker-Planck equation in the linear regime is then

In particular, we notel={l}o=i=n_1, OL[h]=8I{Sn [with the notations of Eq(14)]

—1nYg<i=n_1 [6 is the Kronecker symbol, anéL[h] sat-

isfies condition(7)]. P(fr,t) is the probability to find a (9P|in(fr 1) n1i o4 _ .

given vector of Fourier modes, ={T;}1-i=n_1=F,-L, and . _Uk§=:1 ﬁk[)\klkplin(l—r 1]

we have to build the Fokker-Planck equation B(Lr,t). )

With probability ph(fr) we add a particle of sizeSl on +D, 2 J Plln(Lr't) 23
needleh. This probability may be expanded on the basis of o1 ldl

modesk,

When n=2, we recover Eq(13) linearized with ag= a;
. . =1, andi/(T;)~T,/2 from Egs.(11) and (15).
pr(L,)= Z (F, Yp(L)), (29 Correlation between modes and fluctuation of a mode q in
K the initial regime The correlation between modes,

p(L,) bej?ng the probability to addsL,[k]==n(F))wn <~|qqu2>(t)=f+x . qZP(Lr,t)dL o
i[h] to L,. This leads to the following Fokker-Planck -

equation generalizing Eq13): can be explicitly obtained from E@23) in the linear regime,

PT, ) &g o Dda +a,.n
ot -7 & 2 ~ [pk(L )P(Lr ,t)] (Iqllq2>|in=m{ex;iveﬁ(ql,q2)t] 1} (25)
sz "t azp(fr,t) with an effective velocityve(Qy1,02) = (81/6t) (N g, +Ag,),
+ 2n28t W21 ATl (20 while the fluctuation of a modag is in the linear regime,
~ ~ ~ /2
(note thafl - =T, ,=T#, k being defined modulm). Al (T2in= ﬁ{exr{veﬁ(q Qtl-1}. (26

the difficulty is now in the determination qﬁ((fr). Forn
>2, the simplest approach is to consider the linear approxi- Screening time *t(n, 1), crossover to nonlinearity and
mation which already provides tHeaplacianinstability be- ~ scaling Starting from a periodic array of two needles with
havior of the initial growth. an initial distribution[from (9)], T, (t=0)=A,/2, Kruget al.
The initial conditions when the needles have an equal[4] suggested using scaling arguments ttiat-a In(a/Ay),
length att=0, the initial anglesp; and ¢; (0<i,j<n—1) wherea is the needle spacing. In our cage 27/n and all
are also regularly spaced, scaling functions will only depend on the ratiél/a
=ndl/(2m7). To determine this screening time from the
#i(0)=2mi/n and 6;(0)=m(2j—1)/n. (2] above considerations, we choose some arbitrary positive real
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numberl .i; which is expected to be of order of the distance py)~ y[lny zIn(iny)1. 3

2m/n between the needles, and we introduce the “stoppingl_ ) ] ) ) .

time” tei; h|s scaling, derlved analytlca_lly from crossover cons.|der—
ations between linear and nonlinear regimes, agrees with the

- a one suggested by Kruet al. [4], using numerical and heu-

L ] (27)  ristic considerations.

Mode coupling To make progress in the nonlinear re-
where |-| is the standard Euclidean norm it~ %: |C,|2 gime, a secopd step can be thg determinatiop of the _Fokker-
—s102 If n is even, then we introduceX Planck equation whgn the o_lommant _mddenlz in equation

k=1l 7kl ~ ’ _ . k= (23 has reached this nonlinear regime. The Fokker-Planck
=Re(l ) k=n2, Xn—=IM(I)k<ni2- In the linear regime the  equation coupling nonlinearly the modeandn/2 is (b, and
processX satisfies an equation similar to E@3), or equiva- ¢, have been explicitly determingd
lently a system of independent stochastic differential equa-

thiI: |nf( t>0,

tions (Langevin equations 5P(fr ) sl g NI
—=—7)=—|tan P(L,,t)
dX (1) = oA X () dt+ VD, dWi(t), (28) ot A 4
whereW is a (h—1)-dimensional Brownian motion. When _ Z i{[b T T
n>1, ndl<1, we have o (9~|k ki n2) Tk
ot - o~ =
terie= 5 [2INM+In(InM)—In7+0(1)], (29 +Ck(Tn2) e P(L LD}

where M= a?/(nél). We get the distribution of at time (32

812 "t 2p(T, ,t)]
t..i; from the Fourier transform of Eq25) (I=0):

+ =
2n28t k'=1 &lk/¢9|,k/

<|j|j+j,>”n:|°_'“(_1)i ex Eq. (23) while in the limitT,,,— o it reduces to four equiva-
n? lent equations, similar to Eq23), but now for a problem
with n/2 needles. Whem=2, it is identical with Eq.(13)
A periodic modulation with a doubled period is growing, when ay= ;. Equation(32) may give an idea of the ex-
which is characterized by a factor—(l)j' to which a slow pected structure of the Fokker-Planck equation in the nonlin-

) 5o In the limit T,,,—0, bJ0]=\,,c,[0]=0, we recover
’ p( ) (30

~ 41Inn

random modulation of widtR/In n is superimposed. St ear regime. T_his will be discussed in a more detailed paper.
can be considered as the crossover tihg) between the In conclusion, we have shown that a Fokker-Planck ap-

linear and nonlinear regime. If we consider that the densityproach, a way which had never been previously exploited,
of needlesp(y) at distancey from the initial distribution is  could provide an interesting enlightenment of diffusion-
divided by a factor 2 at each critical tint&, afterp period  limited aggregation at least in the simpler case of parallel
doubling, needles. We hope it could open new prospects in the field of

Laplacian growth.
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