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Laplacian growth of parallel needles: A Fokker-Planck equation approach
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Using a conformal transformation to set up the iterative nonlinear equations, we study analytically the
kinetics of growth of parallel needles. We establish a discrete Fokker-Planck equation for the probability of
finding at time t a given distribution of needle lengths. In the linear regime, it shows a short-wavelength
Laplacian instability which we investigate in detail. From the crossover of the solutions to the nonlinear
regime, we deduce analytically the general scale invariance of the two-dimensional models.
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Among the growth processes, Laplacian growth play
crucial role by its ubiquity. It is underlying electrodepositio
viscous fingering, the start of dendritic growth of crystalli
structures during solidification when the diffusion length
large, dielectric breakdown, or the growth of bacterial co
nies. Diffusion limited aggregation~DLA ! @1# was the first
proposed stochastic model belonging to the class of Lap
ian growth. The Laplacian field takes here its origin in t
diffusion of individual particles in front of the growing struc
tures. The Laplacian field may also be the electric field a
electrodeposition or in dielectric breakdown. For these r
sons the DLA model has been the subject of a consider
amount of work. Unfortunately, in spite of the apparent si
plicity of the model, our analytic understanding of DLA re
mains very unsatisfactory. Therefore a more modest but
ful approach consists of a better understanding of D
growth in the absence of branching@2,3#. The simpler prob-
lem of growing needles has then been considered: they
be either radial or parallel, in the presence of reflect
~model R) or of absorption~model A @4#! of particles as
shown in Fig. 1~see, for instance, Krug@5# for a review!. In
this paper we will concentrate our attention on systems
parallel absorbing needles which is of more fundamental
terest. In two dimensions, conformal mapping allows us
obtain analytical results as shown by Derrida and Hakim@6#
for radial needles.

Considering the growth of two-dimensional structures,
will follow here the same approach of conformal mappi
~for details the reader is referred to Shraiman and Bensim
@7#, Szép and Lugosi@8#, Peterson and Ferry@9#, Kurtze@10#,
Derrida and Hakim@6#, and Ref.@11# for the dynamics!. But
contrary to previous works, we shall focus our attention
the establishment of a Fokker-Planck equation to desc
the growth kinetics. This is because DLA is in general no
deterministic continuous nonlinear problem, but basicall
stochastic phenomenon discretized in space and time. C
petition between the size of the sticking particles and
relative position of growing branches play a crucial ro
Consequently the Fokker-Planck~or equivalently the Lange
vin! approach appears as very appropriate.

Only the case of two needles can be solved exactly. So
a first step we will study the Laplacian instability, in th
linear regime, starting from an initial distribution of needl
with equal lengths. The corresponding behavior is somew
analogous to the ‘‘Mullins-Sekerka’’ instability@12# in den-
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dritic growth from a flat interface. In a recent experime
Losert et al. @13# showed the spatial period-doubling inst
bility of dendritic arrays in directional solidification as sug
gested theoretically by Warren and Langer@14#. We will
prove analytically the existence of a similar behavior
needles growth.

In Laplacian growth, two ingredients are needed: on
one hand the Laplacian behavior determines the long-ra
interaction characteristic of DLA growth, but on the oth
hand the inherent Laplacian instability could not oper
without the presence of local noise. This noise can be in
duced in the initial state as in Refs.@6# and@11#. But in real
systems it comes from the finite sized l of the diffusing
particles, sticking to the needles at discrete time interval

The classical way to parametrize in a convenient man
Laplace’s equation with a zero potential boundary condit
on a set ofn parallel needles is to introduce first a mappi
of the unit circle in the complex planez onto ann-branched
star in the complex planev:

v5 f ~z!5Az)
j 50

n21

~12eiu j /z!a j . ~1!

In this transformation,pa j is the angle between two suc
cessive needles$ j 21,j % in the initial planev, the sum of the
angles being 2p (( j 50

n21a j52). The anglesu j fix the lengths
l i of the needles, andA is a known coefficient. The tip posi
tions in planez are parametrized by the anglesf i :

zi5exp~ if i !, 0< i<n21. ~2!

A second transformationV5 ln v maps the star inv into
a set of parallel needles in a complex planeV and the initial

FIG. 1. Diffusion limited aggregation of parallel needles.
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anglespa j between needles becomes now a distance
tween successive parallel needles, and this pattern of nee
is spatially repeated with a periodic length 2p. The
Laplacian field is then

F~V!5Re$ ln@ f 21~expV!#% ~3!

in the planeV. The lengths of the needles are then given
u ln@f(z)#u at the pointsz5zi (0< i<n21):

l i5 log~4A!1 (
j 50

n21

a j lnusin@~f i2u j !/2#u. ~4!

n additional constraints must be imposed to the anglesf i
and u j to takes into account the fact that the needle t
maximizeu f (z)u at z5zi(;0< i<n21)

(
j 50

n21

a jcotan@~f i2u j !/2#50, ~5!

or if C is the matrix ofci j 5cotan@(f i2u j )/2#, and aW the
vector$a i%,

C•aW 50W . ~6!

Since the number of unknown quantities is larger than
number of parameters by one, we put the average positio
the needles at the origin of thel coordinate~this fixesA),

l̃ 05 l̄ [
1

n (
i 50

n21

l i50. ~7!

The growth rate is now supposed to be proportional to
potential gradient along the needles, and the growth to
restricted to the tips while the needles remain at zero po
tial ~modelA). Therefore, following Refs.@6# and @11#, the
growth rate of the needles is

dli
dt

}F (
j 50

n21

a j$11cot2@~f i2u j !/2#%G21/2

, ~8!

from which we will determine the growth probabilitypi of
the needles.

The general two-needle case (n52) can be exactly solved
@15#. With condition~7!,

l̃ 05~ l 01 l 1!/2[0, l̃ 15~ l 02 l 1!/2. ~9!

The problem is completely defined by the knowledge
the probabilityP( l̃ 1 ,t) to find at timet a length gapl̃ 1. The
growth probabilities of both needles are

p0~ l̃ 1!5u/~11u!, p1~ l̃ 1!51/~11u!, ~10!

with

exp@ l̃ 1#5uS a01a1u2

a11a0u2D (a02a1)/4

. ~11!
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e-
les

y

s

e
of

e
e

n-

f

Now we add at each time intervaldt with probabilities
pi( l̃ 1) ~note that consequently,d l̃ 15d l /2), a particle of size
d l on needlei,

P~ l̃ 1 ,t1dt !5p0~ l̃ 12d l̃ 1!P~ l̃ 12d l̃ 1 ,t !

1p1~ l̃ 11d l̃ 1!P~ l̃ 11d l̃ 1 ,t !. ~12!

The evolution equation~12! can be expanded to second ord
in d l , leading to the Fokker-Planck equation

]P~ l̃ 1 ,t !

]t
5D2] l̃

1
2

2
P~ l̃ 1 ,t !2

v
2

] l̃ 1
„P~ l̃ 1 ,t !U~ l̃ 1!…, ~13!

where the following constants have been introduced:

v5d l /dt and Dn5d l 2/~2n2dt !, ~14!

v/2 (2v/2) is the relative growth velocity of needle 0(1),
andD2 is the ‘‘diffusion’’ coefficient of the sticking between
the two needles. At short time the particles stick at rand
on both needle tips, up to the moment when one needle g
way to the other. The functionU characterizes the screenin
effect,

U~ l̃ 1!5@u~ l̃ 1!21#/@u~ l̃ 1!11#, ~15!

whereu( l̃ 1) is implicitly defined by Eq.~11!. Equations~13!

represent the diffusion of a ’’particle’’ with coordinatel̃ 1 in
a potential

V~ l̃ 1!52
v
2E U~ l̃ 1!d l̃ 1 . ~16!

If the needles are equidistant,a05a151 and u( l̃ 1)
5expl̃1, we have explicitlyU( l̃ 1)5tanh(l̃1/2). The potential
~shown in Fig. 2! is then explicitly

V~ l̃ 1!52
v
2

ln@cosh~ l̃ 1/2!#. ~17!

The time evolution of the solution of Eq.~13! for needles
of equal length (a05a151) at t50, is shown in Fig. 3.

Fokker-Planck equation for the growth of a comb
needles. We consider now a comb of equidistant need
(a i[2/n for all i ). In this case it is convenient to use th
Fourier transform of the distribution of lengths. To avoid t
problems due to the zero eigenvalue ofC ~6!, the completely

FIG. 2. Graph of the effective potentialV( l̃ 1) whena05a1.
1-2
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symmetrical componentsk50 ~corresponding tol̃ 0) are ex-
cluded and we use an indexr to specify these reduced vec
tors,

ṼW r5Fr•VW with

Fr5$Fk̃h5~1/n!exp~2p i k̃h/n!%1< k̃<n21,0<h<n21 .
~18!

In particular, we noteLW 5$ l i%0< i<n21 , dLW @h#5d l $d ih

21/n%0< i<n21 @d ih is the Kronecker symbol, anddLW @h# sat-

isfies condition~7!#. P(L̃W r ,t) is the probability to find a

given vector of Fourier modesL̃W r5$ l̃ i%1< i<n215Fr•LW , and

we have to build the Fokker-Planck equation forP(L̃ r
W ,t).

With probability ph(L̃W r) we add a particle of sized l on
needleh. This probability may be expanded on the basis
modesk̃,

ph~ L̃W r !5(
k

~Fr
21!hk̃pk̃~ L̃W r !, ~19!

pk̃(L̃
W

r) being the probability to adddL̃W r@ k̃#5(h(Fr) k̃h

dLW @h# to L̃W r . This leads to the following Fokker-Planc
equation generalizing Eq.~13!:

]P~ L̃W r ,t !

]t
52

d l

dt (
k̃51

n21
]

] l̃ k

@pk̃~ L̃W r !P~ L̃W r ,t !#

1
d l 2

2n2dt
(

k851

n21
]2P~ L̃W r ,t !

] l̃ k8] l̃ 2k8

~20!

~note that l̃ 2k[ l̃ n2k5 l̃ k* , k being defined modulon). All

the difficulty is now in the determination ofpk̃(L̃
W

r). For n
.2, the simplest approach is to consider the linear appr
mation which already provides theLaplacian instability be-
havior of the initial growth.

The initial conditions: when the needles have an equ
length att50, the initial anglesf i and u j (0< i , j <n21)
are also regularly spaced,

f i~0!52p i /n and u j~0!5p~2 j 21!/n. ~21!

FIG. 3. Probability distribution ofP( l̃ 1 ,t) at times t/dt
520,30, . . . ,120.
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We first calculateduW (0) anddwW (0) corresponding to a
variation dLW (0), for instance the addition of a particle o
needleh. Then the sticking probabilitypi@h# of a new par-
ticle on needlei, while a particle of sized l was already stuck
on needleh, and finally the sticking probabilitypk̃@ h̃# of a
particle in modek̃, while a particle of sized l was already
stuck in modeh̃. We find

pk̃@ h̃#5
dk0

n
1dkhlkd l , lk5

k

n S 12
k

nD . ~22!

Linearized kinetic equation of a comb:Let Plin(LW ,t) be
the linearized probability to find a set of needles of sizeLW .
Linearization supposes that the lengthsl i are not too differ-
ent in such a way that no needle can be completely scree
by the others. The sticking probabilities onLW are then the
superposition of the individual probabilitiespi@ l h#, to add a
new particle on needlei while needleh has already a length
l h and is deduced frompi@h# by replacingd l by l h ~super-
position rule!.

The Fokker-Planck equation in the linear regime is th
@with the notations of Eq.~14!#,

]Plin~ L̃W r ,t !

]t
52v (

k51

n21
]

] l̃ k

@lk l̃ kPlin~ L̃W r ,t !#

1Dn (
k851

n21
]2Plin~ L̃W r ,t !

] l̃ k8] l̃ 2k8

. ~23!

When n52, we recover Eq.~13! linearized with a05a1

51, andU( l̃ 1); l̃ 1/2 from Eqs.~11! and ~15!.
Correlation between modes and fluctuation of a mode q

the initial regime: The correlation between modes,

^ l̃ q1
l̃ q2

&~ t !5E
2`

1`

l̃ q1
l̃ q2

P~ L̃W r ,t !dL̃W r ~24!

can be explicitly obtained from Eq.~23! in the linear regime,

^ l̃ q1
l̃ q2

& l in5
Dndq11q2 ,n

veff~q1 ,q2!
$exp@veff~q1 ,q2!t#21% ~25!

with an effective velocityveff(q1 ,q2)5(d l /dt)(lq1
1lq2

),
while the fluctuation of a modeq is in the linear regime,

^ l̃ q
2& l in5

2Dndq,n/2

veff~q,q!
$exp@veff~q,q!t#21%. ~26!

Screening time t* (n,d l ), crossover to nonlinearity and
scaling: Starting from a periodic array of two needles wi
an initial distribution@from ~9!#, l̃ 1(t50)5D0/2, Kruget al.
@4# suggested using scaling arguments thatt* ;a ln(a/D0),
wherea is the needle spacing. In our casea52p/n and all
scaling functions will only depend on the ratiod l /a
5nd l /(2p). To determine this screening time from th
above considerations, we choose some arbitrary positive
1-3



ce
in

ua

n

g,

sit

1

er-
the

-

e-
ker-

nck

-
lin-
er.

ap-
ed,
n-
llel
d of

s
ra-

r-

M.-O. BERNARD, J. GARNIER, AND J.-F. GOUYET PHYSICAL REVIEW E64 041401
numberl crit which is expected to be of order of the distan
2p/n between the needles, and we introduce the ‘‘stopp
time’’ tcrit

tcrit5 infH t>0,ULW rU5 l crit5
a

nJ , ~27!

where u•u is the standard Euclidean norm inCn21: uLW r u2

5(k51
n21u l̃ ku2. If n is even, then we introduceXk

5Re(l̃ k)k<n/2 ,Xn2k5Im( l̃ k)k,n/2 . In the linear regime the
processXW satisfies an equation similar to Eq.~23!, or equiva-
lently a system of independent stochastic differential eq
tions ~Langevin equations!,

dXk~ t !5vlkXk~ t !dt1ADndWk~ t !, ~28!

whereWW is a (n21)-dimensional Brownian motion. Whe
n@1, nd l !1, we have

tcrit5
dt

d l
@2 lnM1 ln~ ln M !2 ln p1o~1!#, ~29!

where M5a2/(nd l ). We get the distribution ofLW at time
tcrit from the Fourier transform of Eq.~25! ( l̄ 50):

^ l j l j 1 j 8& l in5
l crit
2

n2
~21! j 8expS 2

p2 j 82

4 lnn
D . ~30!

A periodic modulation with a doubled period is growin
which is characterized by a factor (21) j 8 to which a slow
random modulation of widthAln n is superimposed. So,tcrit
can be considered as the crossover timet* (n) between the
linear and nonlinear regime. If we consider that the den
of needlesr(y) at distancey from the initial distribution is
divided by a factor 2 at each critical timet* , after p period
doubling,

y.
d l

dt F1

n
t* ~n!1

2

n
t* S n

2D1•••1
2p

n
t* S n

2pD G
for which r(y)5n/2p. From Eq. ~29! y(r);(1/r)@ ln r
11

2ln(ln r)# for r!n, so
ett

04140
g
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r~y!;
y

@ ln y2 1
2 ln~ ln y!#. ~31!

This scaling, derived analytically from crossover consid
ations between linear and nonlinear regimes, agrees with
one suggested by Kruget al. @4#, using numerical and heu
ristic considerations.

Mode coupling. To make progress in the nonlinear r
gime, a second step can be the determination of the Fok
Planck equation when the dominant modek5n/2 in equation
~23! has reached this nonlinear regime. The Fokker-Pla
equation coupling nonlinearly the modesn andn/2 is (bk and
ck have been explicitly determined!,

]P~ L̃W r ,t !

]t
52

d l

dt H ]

] l̃ n/2

F tanhS n l̃ n/2

4
D P~ L̃W r ,t !G

2 (
kÞn/2

]

] l̃ k

$@bk~ l̃ n/2! l̃ k

1ck~ l̃ n/2! l̃ k1n/2#P~ L̃W r ,t !%

1
d l 2

2n2dt
(

k851

n21
]2P~ L̃W r ,t !

] l̃ k8] l̃ 2k8
J . ~32!

In the limit l̃ n/2→0, bk@0#5lk ,ck@0#50, we recover
Eq. ~23! while in the limit l̃ n/2→` it reduces to four equiva-
lent equations, similar to Eq.~23!, but now for a problem
with n/2 needles. Whenn52, it is identical with Eq.~13!
when a05a1. Equation~32! may give an idea of the ex
pected structure of the Fokker-Planck equation in the non
ear regime. This will be discussed in a more detailed pap

In conclusion, we have shown that a Fokker-Planck
proach, a way which had never been previously exploit
could provide an interesting enlightenment of diffusio
limited aggregation at least in the simpler case of para
needles. We hope it could open new prospects in the fiel
Laplacian growth.
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